ORDA - Online Research Data Archive 
    • Login
    View Item 
    •   ORDA Home
    • University Hospitals of Derby and Burton NHS Foundation Trust
    • Division of Medicine
    • Specialist Medicine
    • View Item
    •   ORDA Home
    • University Hospitals of Derby and Burton NHS Foundation Trust
    • Division of Medicine
    • Specialist Medicine
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Oesophageal Doppler guided optimization of cardiac output does not increase visceral microvascular blood flow in healthy volunteers.

    Thumbnail
    Abstract
    BACKGROUND: Oesophageal Doppler monitoring (ODM) is used clinically to optimize cardiac output (CO) and guide fluid therapy. Despite limited experimental evidence, it is assumed that increasing CO increases visceral microvascular blood flow (MBF). We used contrast-enhanced ultrasound (CEUS) to assess whether ODM-guided optimization of CO altered MBF. METHODS: Sixteen healthy male volunteers (62 ± 3·4 years) were studied. Baseline measurements of CO were recorded via ODM. Hepatic and renal MBF was assessed via CEUS. Saline 0·9% was administered to optimize CO according to a standard protocol and repeat CEUS performed. Time-intensity curves were constructed, allowing organ perfusion calculation via time to 5% perfusion (TT5). MBF was assessed via organ perfusion rise time (RT) (5-95%). RESULTS: CO increased (4535 ± 241 ml/min versus 5442 ± 329 ml/min, P<0·0001) following fluid administration, whilst time to renal (22·48 ± 1·19 s versus 20·79 ± 1·31 s; P = 0·03), but not hepatic (28·13 ± 4·48 s versus 26·83 ± 1·53 s; P = 0·15) perfusion decreased. Time to renal perfusion was related to CO (renal: r = -0·43, P = 0·01). Hepatic nor renal RT altered following fluid administration (renal: 9·03 ± 0·86 versus 8·93 ± 0·85 s P = 0·86; hepatic: 27·86 ± 1·60 s versus 30·71 ± 2·19 s, P = 0·13). No relationship was observed between changes in CO and MBF in either organ (renal: r = -0·17, P = 0·54; hepatic: r = -0·07, P = 0·80). CONCLUSIONS: ODM-optimized CO reduces time to renal perfusion but does not alter renal or hepatic MBF. A lack of relationship between microvascular visceral perfusion and CO following ODM-guided optimization may explain the absence of improved clinical outcome with ODM monitoring.
    URI
    https://orda.derbyhospitals.nhs.uk/handle/123456789/941
    Collections
    • Specialist Medicine [375]
    Date
    2017-02
    Author
    Heinink, Thomas
    Read, David
    Mitchell, William K
    Bhalla, Ashish
    Lund, Jonathan
    Phillips, Bethan
    Williams, John P
    Show full item record

    copyright © 2017  Derby Teaching Hospitals NHS Foundation Trust
    Contact Us | Send Feedback
    Powered by KnowledgeArc
     

     

    Browse

    All of ORDACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Researcher Profiles

    Researchers

    My Account

    Login

    copyright © 2017  Derby Teaching Hospitals NHS Foundation Trust
    Contact Us | Send Feedback
    Powered by KnowledgeArc